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Chapter 17: Circular motion

Moving in circles
The racing car in Figure 17.1 shows two examples of 
circular motion. The car’s wheels spin around the 
axles, and the car follows a curved path as it speeds 
round the bend.

Describing circular motion
Many things move in circles. Here are some examples:

■■ the wheels of a car or a bicycle
■■ the Earth in its (approximately circular) orbit round the Sun
■■ the hands of a clock
■■ a spinning DVD in a laptop
■■ the drum of a washing machine.

Sometimes, things move along a path that is part of a 
circle. For example, the car in Figure 17.1 is travelling 
around a bend in the road which is an arc of a circle.

Circular motion is different from the straight-line 
motion that we have discussed previously in our study of 
kinematics and dynamics in Chapters 1–6. However, we 
can extend these ideas of dynamics to build up a picture of 
circular motion.

Around the clock
The second hand of a clock moves steadily round the clock 
face. It takes one minute for it to travel all the way round 
the circle. There are 360° in a complete circle and  
60 seconds in a minute. So the hand moves 6° every 
second. If we know the angle θ through which the hand 
has moved from the vertical (12 o’clock) position, we can 
predict the position of the hand.

In the same way, we can describe the position of any 
object as it moves around a circle simply by stating the 
angle θ of the arc through which it has moved from its 
starting position. This is shown in Figure 17.2.

The angle θ through which the object has moved 
is known as its angular displacement. For an object 
moving in a straight line, its position was defined by its 
displacement s, the distance it has travelled from its starting 
position. The corresponding quantity for circular motion is 
angular displacement θ, the angle of the arc through which 
the object has moved from its starting position.

Figure 17.1 Circular motion: the car’s wheels go round in 
circles as the car itself follows a curved path. 

  θ = 0θ

Figure 17.2 To know how far an object has moved round the 
circle, we need to know the angle θ.

1 a  By how many degrees does the angular 
displacement of the hour hand of a clock 
change each hour?

b A clock is showing 3.30. Calculate the angular 
displacements in degrees from the 12.00 
position of the clock to:
i the minute hand
ii the hour hand.

QUESTION
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Angles in radians
When dealing with circles and circular motion, it is more 
convenient to measure angles and angular displacements 
in units called radians rather than in degrees. If an object 
moves a distance s around a circular path of radius r 
(Figure 17.3a), its angular displacement θ in radians is 
defined as follows:

angle (in radians) =  length of arc
radius

or θ = s
r

Since both s and r are distances measured in metres, 
it follows that the angle θ is simply a ratio. It is a 
dimensionless quantity. If the object moves twice as 
far around a circle of twice the radius (Figure 17.3b), its 
angular displacement θ will be the same.

θ  =  length of arc
radius

  =  2s
2r

  =  s
r

Defining the radian
An angle of one radian is defined as follows (see Figure 17.4):

One radian is the angle subtended at the centre of a circle 
by an arc of length equal to the radius of the circle.

2rr

2s
s

a b

θθ

1 radian

r r

Figure 17.3 The size of an angle depends on the radius 
and the length of the arc. Doubling both leaves the angle 
unchanged. 

An angle of 360° is equivalent to an angle of 2π radians. 
We can therefore determine what 1 radian is equivalent to 
in degrees.

 1 radian = 360°
2π

or 1 radian ≈ 57.3°
If you can remember that there are 2π rad in a full circle, 
you will be able to convert between radians and degrees:

■■ to convert from degrees to radians, multiply by 
2π

360°  or  
π

180°

■■ to convert from radians to degrees, multiply by 
360°
2π   or  

180°
π

Now look at Worked example 1.

Figure 17.4 The length of the arc is equal to the radius when 
the angle is 1 radian.

1 If θ = 60°, what is the value of θ in radians?

 The angle θ  is 60°. 360° is equivalent to 2π radians. 
Therefore:

 θ  =  60  ×  
2π

360

 =  
π
3  = 1.05 rad

 (Note that it is often useful to express an angle as a 
multiple of π radians.)

WORKED EXAMPLE

When we define θ in this way, its units are radians rather 
than degrees. How are radians related to degrees? If an 
object moves all the way round the circumference of the 
circle, it moves a distance of 2πr. We can calculate its 
angular displacement in radians:

θ  =  circumference
radius

  = 2πr
r

  =  2π

Hence a complete circle contains 2π radians. But we can 
also say that the object has moved through 360°. Hence:

360° = 2π rad
Similarly, we have:

180° = π rad 90° = π
2

 rad

45° = π
4

 rad and so on
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Steady speed, changing velocity
If we are to use Newton’s laws of motion to explain 
circular motion, we must consider the velocity of an object 
going round in a circle, rather than its speed.

There is an important distinction between speed and 
velocity: speed is a scalar quantity which has magnitude 
only, whereas velocity is a vector quantity, with both 
magnitude and direction. We need to think about the 
direction of motion of an orbiting object.

2 a  Convert the following angles from degrees into 
radians: 30°, 90°, 105°.

b Convert these angles from radians to degrees: 
0.5 rad, 0.75 rad, π rad, π2 

rad.
c Express the following angles as multiples  

of π radians: 30°, 120°, 270°, 720°.

5 Show that the angular velocity of the second hand 
of a clock is about 0.105 rad s−1.

6 The drum of a washing machine spins at a rate of 
1200 rpm (revolutions per minute).
a Determine the number of revolutions per 

second of the drum.
b Determine the angular velocity of the drum.

3 Explain why all the velocity arrows in Figure 17.5 are 
drawn the same length.

4 A toy train travels at a steady speed of 0.2 m s−1 
around a circular track (Figure 17.6). A and B are  
two points diametrically opposite to one another on 
the track.
a Determine the change in the speed of the train as 

it travels from A to B.
b Determine the change in the velocity of the train  

as it travels from A to B.

A

v

v

v

B

C

0.2 ms–1

0.2 ms–1

A B

Figure 17.5 The velocity v of an object changes direction as it 
moves along a circular path. 

Figure 17.5 shows how we can represent the velocity of 
an object at various points around its circular path. The 
arrows are straight and show the direction of motion at 
a particular instant. They are drawn as tangents to the 
circular path. As the object travels through points A, B, C, 
etc., its speed remains constant but its direction changes. 
Since the direction of the velocity v is changing, it follows 
that v itself (a vector quantity) is changing as the object 
moves in a circle.

Angular velocity
As the hands of a clock travel steadily around the clock 
face, their velocity is constantly changing. The minute 
hand travels round 360° or 2π radians in 3600 seconds. 
Although its velocity is changing, we can say that its 
angular velocity is constant, because it moves through the 
same angle each second:

 angular velocity = angular displacement
time taken

 ω = Δθ
Δt

We use the symbol ω (Greek letter omega) for angular 
velocity, measured in radians per second (rad s−1). For the 
minute hand of a clock, we have ω = 2π

3600
 ≈ 0.001 75 rad s−1.

Figure 17.6 A toy train travelling around a circular track – 
for Question 4. 

QUESTION

QUESTIONS

QUESTIONS
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Centripetal forces
When an object’s velocity is changing, it has acceleration. 
In the case of uniform circular motion, the acceleration is 
rather unusual because, as we have seen, the object’s speed 
does not change but its velocity does. How can an object 
accelerate and at the same time have a steady speed?

One way to understand this is to think about what 
Newton’s laws of motion can tell us about this situation. 
Newton’s fi rst law states that an object remains at rest 
or in a state of uniform motion (at constant speed in a 
straight line) unless it is acted on by an external force. In 
the case of an object moving at steady speed in a circle, we 
have a body whose velocity is not constant; therefore, there 
must be a resultant (unbalanced) force acting on it.

Now we can think about diff erent situations where 
objects are going round in a circle and try to fi nd the force 
that is acting on them.

■■ Consider a rubber bung on the end of a string. Imagine 
whirling it in a horizontal circle above your head (Figure 17.7). 
To make it go round in a circle, you have to pull on the string. 
The pull of the string on the bung is the unbalanced force, 
which is constantly acting to change the bung’s velocity as it 
orbits your head. If you let go of the string, suddenly there is 
no tension in the string and the bung will fly off  at a tangent 
to the circle.

■■ Similarly, as the Earth orbits the Sun, it has a constantly 
changing velocity. Newton’s first law suggests that there 
must be an unbalanced force acting on it. That force is the 
gravitational pull of the Sun. If the force disappeared, the 
Earth would travel off  in a straight line.

Relating velocity and angular velocity
Th ink again about the second hand of a clock. As it goes 
round, each point on the hand has the same angular 
velocity. However, diff erent points on the hand have 
diff erent velocities. Th e tip of the hand moves fastest; points 
closer to the centre of the clock face move more slowly.

Th is shows that the speed v of an object travelling 
around a circle depends on two quantities: its angular 
velocity ω and its distance from the centre of the circle r. 
We can write the relationship as an equation:

 speed = angular velocity × radius

 v = ωr
Worked example 2 shows how to use this equation.

7 The angular velocity of the second hand of a clock 
is 0.105 rad s−1. If the length of the hand is 1.8 cm, 
calculate the speed of the tip of the hand as it 
moves round.

8 A car travels around a 90° bend in 15 s. The radius 
of the bend is 50 m.
a Determine the angular velocity of the car.
b Determine the speed of the car.

9 A spacecraft  orbits the Earth in a circular path of 
radius 7000 km at a speed of 7800 m s−1. Determine 
its angular velocity.

2 A toy train travels around a circular track of radius 
2.5 m in a time of 40 s. What is its speed?

 Step 1 Calculate the train’s angular velocity ω. One 
circuit of the track is equivalent to 2π radians. The 
rain travels around in 10 s. Therefore:

ω  =  
2π
40  =  0.157 rad−1

 Step 2 Calculate the train’s speed:
v  =  ωr  = 0.157  ×  2.5  =  0.39 m s−1

 Hint: You could have arrived at the same answer by 
calculating the distance travelled (the circumference 
of the circle) and dividing by the time taken.

tension

In both of these cases, you should be able to see why 
the direction of the force is as shown in Figure 17.8. Th e 
force on the object is directed towards the centre of the 
circle. We describe each of these forces as a centripetal 
force – that is, directed towards the centre.

It is important to note that the word centripetal is 
an adjective. We use it to describe a force that is making 

Figure 17.7 Whirling a rubber bung.

WORKED EXAMPLE

QUESTIONS
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it follows that the acceleration of the object must be in the 
same direction as the change in the velocity – towards 
the centre of the circle. This is not surprising because, 
according to F = ma, the acceleration a of the object is in 
the same direction as the centripetal force F.

Acceleration at steady speed
Now that we know that the centripetal force F and 
acceleration are always at right angles to the object’s 
velocity, we can explain why its speed remains constant. 
If the force is to make the object change its speed, it must 
have a component in the direction of the object’s velocity; 
it must provide a push in the direction in which the object 
is already travelling. However, here we have a force at 90° 
to the velocity, so it has no component in the required 
direction. (Its component in the direction of the velocity 
is F cos 90° = 0.) It acts to pull the object around the circle, 
without ever making it speed up or slow down.

You can also use the idea of work done to show that the 
speed of the object moving in a circle remains the same. 
The work done by a force is equal to the product of the force 
and the distance moved by the object in the direction of the 
force. The distance moved by the object in the direction of 
the centripetal force is zero; hence the work done is zero. 
If no work is done on the object, its kinetic energy must 
remain the same and hence its speed is unchanged.

something travel along a circular path. It does not tell 
us what causes this force, which might be gravitational, 
electrostatic, magnetic, frictional or whatever.

gravitational
pull of Sun

Earth

velocity

Sun

Figure 17.8 The gravitational pull of the Sun provides the 
centripetal force that keeps the Earth in its orbit. 

 10 In each of the following cases, state what 
provides the centripetal force:
a the Moon orbiting the Earth
b a car going round a bend on a flat, rough road
c the weight on the end of a swinging 

pendulum.

 11 A car is travelling along a flat road. Explain why 
it cannot go around a bend if the road surface is 
perfectly smooth. Suggest what might happen if 
the driver tries turning the steering wheel.

 12 An object follows a circular path at a steady 
speed. Describe how each of the following 
quantities changes as it follows this path: speed, 
velocity, kinetic energy, momentum, centripetal 
force, centripetal acceleration. (Refer to both 
magnitude and direction, as appropriate.)

Vector diagrams
Figure 17.9a shows an object travelling along a circular 
path, at two positions in its orbit. It reaches position B a 
short time after A. How has its velocity changed between 
these two positions?

The change in the velocity of the object can be 
determined using a vector triangle. The vector triangle in 
Figure 17.9b shows the difference between the final velocity 
vB and initial velocity vA. The change in the velocity of the 
object between the points B and A is shown by the smaller 
arrow labelled Δv. Note that the change in the velocity of 
the object is (more or less):

■■ at right angles to the velocity at A
■■ directed towards the centre of the circle.

The object is accelerating because its velocity changes. 
Since acceleration is the rate of change of velocity:

a = Δv
Δt

A

B

vB

vB vA

vA

a

b vector representing
change in velocity (Δv)Δv

Figure 17.9 Changes in the velocity vector.

QUESTIONS

QUESTION
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a constant speed. Figure 17.11 shows a particle moving 
round a circle. In time Δt it moves through an angle Δθ 
from A to B. Its speed remains constant but its velocity 
changes by Δv, as shown in the vector diagram. Since the 
narrow angle in this triangle is also Δθ, we can say that:

Δθ  =  Δv
v

Dividing both sides of this equation by Δt and rearranging 
gives:

Δv
Δt

  =  vΔθ
Δt

The quantity on the left is Δv
Δt

  = a, the particle’s acceleration. 

The quantity on the right is Δθ
Δt

  = ω, the angular velocity. 
Substituting for these gives:

a  = vω
Using v = ωr, we can eliminate ω from this equation:

a  =  v
2

r

Understanding circular motion
Isaac Newton devised an ingenious thought experiment 
that allows us to think about how an object can remain in 
a circular orbit around the Earth. Consider a large cannon 
on some high point on the Earth’s surface, capable of 
firing objects horizontally. Figure 17.10 shows what will 
happen if we fire them at different speeds.

 13 Show that an alternative equation for the 
centripetal acceleration is a  =  ω 2r.

just the right
speed to orbit

too fast

slow
too slow

Δθ 

Δθ 

Δθ

vA

vB vA

Δv
vB

r
B

A

Figure 17.10 Newton’s ‘thought experiment’. 

If the object is fired too slowly, gravity will pull it down 
towards the ground and it will land at some distance from 
the cannon. A faster initial speed results in the object 
landing further from the cannon.

Now, if we try a bit faster than this, the object will 
travel all the way round the Earth. We have to get just 
the right speed to do this. As the object is pulled down 
towards the Earth, the curved surface of the Earth falls 
away beneath it. The object follows a circular path, 
constantly falling under gravity but never getting any 
closer to the surface.

If the object is fired too fast, it travels off into space, 
and fails to get into a circular orbit. So we can see that 
there is just one correct speed to achieve a circular orbit 
under gravity. (Note that we have ignored the effects of air 
resistance in this discussion.)

Calculating acceleration and 
force
If we spin a bung around in a circle (Figure 17.7), we get 
a feeling for the factors which determine the centripetal 
force F required to keep it in its circular orbit. The greater 
the mass m of the bung and the greater its speed v, the 
greater is the force F that is required. However if the radius 
r of the circle is increased, F is smaller.

Now we will deduce an expression for the centripetal 
acceleration of an object moving around a circle with 

Newton’s second law of motion
Now that we have an equation for centripetal acceleration, 
we can use Newton’s second law of motion to deduce an 
equation for centripetal force. If we write this law as  
F = ma, we find:

centripetal force F = mv 2
r

 = mr ω 2

Figure 17.11 Deducing an expression for centripetal 
acceleration.

QUESTION
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The origins of centripetal forces
It is useful to look at one or two situations where the 
physical origin of the centripetal force may not be 
immediately obvious. In each case, you will notice that 
the forces acting on the moving object are not balanced 
– there is a resultant force. An object moving along a 
circular path is not in equilibrium and the resultant force 
acting on it is the centripetal force.
1 A car cornering on a level road (Figure 17.13). Here, 

the road provides two forces. Th e force N is the normal 
contact force which balances the weight mg of the car – 
the car has no acceleration in the vertical direction. 

Remembering that an object accelerates in the direction of 
the resultant force on it, it follows that both F and a are in 
the same direction, towards the centre of the circle.

Calculating orbital speed
We can use the force equation to calculate the speed that 
an object must have to orbit the Earth under gravity, as in 
Newton’s thought experiment. Th e necessary centripetal 
force  mv2

r
 is provided by the Earth’s gravitational pull mg.

Hence:

mg =  mv2

r

g  =  v
2

r
where g = 9.81 m s−2 is the acceleration of free fall close to 
the Earth’s surface. Th e radius of its orbit is equal to the 
Earth’s radius, approximately 6400 km. Hence, we have:

 9.81 =    v2

(6.4 × 106)

 v =    9.81 × 6.4 × 106 ≈ 7.92 × 103 ms−1

Th us if you were to throw or hit a ball horizontally at 
almost 8 km s−1, it would go into orbit around the Earth.

 14 Calculate how long it would take a ball to orbit the 
Earth once, just above the surface, at a speed of 
7920 m s−1. (The radius of the Earth is 6400 km.)

 15 A stone of mass 0.20 kg is whirled round on the end 
of a string of length 30 cm. The string will break 
when the tension in it exceeds 8.0 N. Calculate the 
maximum speed at which the stone can be whirled 
without the string breaking.

 16 The International Space Station (Figure 17.12) has 
a mass of 350 tonnes, and orbits the Earth at an 
average height of 340 km, where the gravitational 
acceleration is 8.8 m s−2. The radius of the Earth is 
6400 km. Calculate:
a the centripetal force on the space station
b the speed at which it orbits
c the time taken for each orbit
d the number of times it orbits the Earth each day.

 17 A stone of mass 0.40 kg is whirled round on the end 
of a string 0.50 m long. It makes three complete 
revolutions each second. Calculate:
a its speed
b its centripetal acceleration
c the tension in the string.

 18 Mars orbits the Sun once every 687 days at a 
distance of 2.3 × 1011 m. The mass of Mars is 
6.4 × 1023 kg. Calculate:
a its orbital speed
b its centripetal acceleration
c the gravitational force exerted on Mars by the Sun.

Figure 17.12 The view from the International Space 
Station, orbiting Earth over Australia. 

mg

F

N

road

Figure 17.13 This car is moving away from us and turning to 
the left . Friction provides the centripetal force. N and F are 
the total normal contact and friction forces (respectively) 
provided by the contact of all four tyres with the road. 

QUESTIONS
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mg

Na

b N

F

mg

vertical
component

N

horizontal
component

road

road

θ

θ

θ

θ

Figure 17.14 a On a banked road, the horizontal component 
of the normal contact force from the road can provide the 
centripetal force needed for cornering. b For a slow car, 
friction acts up the slope to stop it from sliding down. 

Th e second force is the force of friction F between the 
tyres and the road surface. Th is is the unbalanced, 
centripetal force. If the road or tyres do not provide 
enough friction, the car will not go round the bend 
along the desired path. Th e friction between the tyres 
and the road provides the centripetal force necessary 
for the car’s circular motion.

2 A car cornering on a banked road (Figure 17.14a). Here, 
the normal contact force N has a horizontal component 
which can provide the centripetal force. Th e vertical 
component of N balances the car’s weight. Th erefore:
vertically N cos θ = mg

horizontally N sin θ = mv2

r
 where r is the radius of the circular corner and v is the 

car’s speed.

mg

F
N

mg

L

mg

T

a b c

θ θ

Note that the three situations shown in Figure 17.14a, Figure 
17.15a and Figure 17.15b are equivalent. Th e moving object’s 
weight acts downwards. Th e second force has a vertical 
component, which balances the weight, and a horizontal 
component, which provides the centripetal force.

Figure 17.15 Three more ways of providing a centripetal force. 

 19 Explain why it is impossible to whirl a bung 
around on the end of a string in such a way that 
the string remains perfectly horizontal.

 20 Explain why an aircraft  will tend to lose height 
when banking, unless the pilot increases its 
speed to provide more lift .

 21 If you have ever been down a water-slide (a 
flume) (Figure 17.16) you will know that you tend 
to slide up the side as you go around a bend. 
Explain how this provides the centripetal force 
needed to push you around the bend. Explain 
why you slide higher if you are going faster.

Figure 17.16 
A water-slide 
is a good place 
to experience 
centripetal forces. 

QUESTIONS

 If a car travels around the bend too slowly, it will tend to 
slide down the slope and friction will act up the slope to 
keep it on course (Figure 17.14b). If it travels too fast, it 
will tend to slide up the slope. If friction is insuffi  cient, 
it will move up the slope and come off  the road.

3 An aircraft  banking (Figure 17.15a). To change 
direction, the pilot tips the aircraft ’s wings. Th e vertical 
component of the lift  force L on the wings balances the 
weight. Th e horizontal component of L provides the 
centripetal force.

4 A stone being whirled in a horizontal circle on the end 
of a string – this arrangement is known as a conical 
pendulum (Figure 17.15b). Th e vertical component of 
the tension T is equal to the weight of the stone. Th e 

horizontal component of the tension provides the 
centripetal force for the circular motion.

5 At the fairground (Figure 17.15c). As the cylinder 
spins, the fl oor drops away. Friction balances your 
weight. Th e normal contact force of the wall provides 
the centripetal force. You feel as though you are being 
pushed back against the wall; what you are feeling is 
the push of the wall on your back.
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End-of-chapter questions
1 a Explain what is meant by a radian. [1]

b A body moves round a circle at a constant speed and completes one revolution in 15 s. Calculate the 
angular velocity of the body. [2]

2 Figure 17.17 shows part of the track of a roller-coaster ride in which a truck loops the loop. When the truck 
is at the position shown, there is no reaction force between the wheels of the truck and the track. The 
diameter of the loop in the track is 8.0 m.

Figure 17.17 For End-of-chapter Question 2.

a Explain what provides the centripetal force to keep the truck moving in a circle. [1]
b Given that the acceleration due to gravity g is 9.8 m s−2, calculate the speed of the truck. [3]

Summary
■■ Angles can be measured in radians. An angle of 2π rad 

is equal to 360°.

■■ An object moving at a steady speed along a circular 
path has uniform circular motion.

■■ The angular displacement θ is a measure of the angle 
through which an object moves in a circle.

■■ The angular velocity ω is the rate at which the angular 

■  displacement changes: ω = 
Δθ
Δt

■■ For an object moving with uniform circular motion, 
speed and angular velocity are related by v =  ωr.

■■ An object moving in a circle is not in equilibrium; 
it has a resultant force acting on it.

■■ The resultant force acting on an object moving in 
a circle is called the centripetal force. This force is 
directed towards the centre of the circle and is at right 
angles to the velocity of the object.

■■ An object moving in a circle has a centripetal 
acceleration a given by:

a  =  
v2

r
  =  rω 2

■■ The magnitude of the centripetal force F acting on 
an object of mass m moving at a speed v in a circle 
of radius r is given by:

F  =  
mv2

r
  =  mrω 2
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3 a Describe what is meant by centripetal force.  [1]

Figure 17.18 For End-of-chapter Question 3. 

b Figure 17.18 shows a toy of mass 60 g placed on the edge of a rotating turntable.
i The diameter of the turntable is 15.0 cm. The turntable rotates, making 20 revolutions every minute. 

Calculate the centripetal force acting on the toy.  [4]
ii Explain why the toy falls off  when the speed of the turntable is increased.  [2]

4 One end of a string is secured to the ceiling and a metal ball of mass 50 g is tied to its other end. The ball is 
initially at rest in the vertical position. The ball is raised through a vertical height of 70 cm (see Figure 17.19). 
The ball is then released. It describes a circular arc as it passes through the vertical position.

Figure 17.19 For End-of-chapter Question 4.

 The length of the string is 1.50 m.
a Ignoring the eff ects of air resistance, determine the speed v of the ball as it passes through the 

vertical position.  [2]
b Calculate the tension T in the string when the string is vertical.  [4]
c Explain why your answer to b is not equal to the weight of the ball.  [2]

5 A car is travelling round a bend when it hits a patch of oil. The car slides off  the road onto the grass verge. 
Explain, using your understanding of circular motion, why the car came off  the road.  [2]

toy

15.0 cm

turntable

string

v

metal ball

70 cm
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6 Figure 17.20 shows an aeroplane banking to make a horizontal turn. The aeroplane is travelling 
at a speed of 75 m s−1 and the radius of the turning circle is 80 m.
a Copy the diagram. On your copy, draw and label the forces acting on the aeroplane.  [2]
b Calculate the angle which the aeroplane makes with the horizontal.  [4]

Figure 17.20 For End-of-chapter Question 6.

7 a Explain what is meant by the term angular velocity. [2]
b Figure 17.21 shows a rubber bung, of mass 200 g, on the end of a length of string being swung 

in a horizontal circle of radius 40 cm. The string makes an angle of 56° with the vertical.

Figure 17.21 For End-of-chapter Question 7.

 Calculate:
i the tension in the string [2]
ii the angular velocity of the bung [3]
iii the time it takes to make one complete revolution. [1]

8 a Explain what is meant by a centripetal force. [2]
b A teacher swings a bucket of water, of total mass 5.4 kg, round in a vertical circle of diameter 1.8 m.

i Calculate the minimum speed which the bucket must be swung at so that the water remains in 
the bucket at the top of the circle. [3]

ii Assuming that the speed remains constant, what will be the force on the teacher’s hand when 
the bucket is at the bottom of the circle? [2]
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 9 In training, military pilots are given various tests. One test puts them in a seat on the end of a large 
arm which is then spun round at a high speed, as shown in Figure 17.22.

Figure 17.22 For End-of-chapter Question 9. 

a Describe what the pilot will feel and relate this to the centripetal force. [3]
b At top speed the pilot will experience a centripetal force equivalent to six times his own weight (6 mg).

i Calculate the speed of the pilot in this test. [3]
ii Calculate the number of revolutions of the pilot per minute. [2]

c Suggest why it is necessary for pilots to be able to be able to withstand forces of this type. [2]

10 a Show that in one revolution there are 2π radians. [2]
b Figure 17.23 shows a centrifuge used to separate solid particles suspended in a liquid of lower density. 

The container is spun at a rate of 540 revolutions per minute.

Figure 17.23 For End-of-chapter Question 10.

i Calculate the angular velocity of the container. [2]
ii Calculate the centripetal force on a particle of mass 20 mg at the end of the test tube. [2]

c An alternative method of separating the particles from the liquid is to allow them to settle to the
bottom of a stationary container under gravity.

 By comparing the forces involved, explain why the centrifuge is a more eff ective method of separating 
the mixture. [2]
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